想学人工智能,应该从哪里学起。有什么机会
“人机大战”是眼下非常热门的新闻名词,这自然也催生出了一些与人工智能相关的职业,使得AI人才供给产生了巨大的缺口,越来越多的、各行各业的人,都想搭上人工智能这辆快车。现在人工智能已经涉及到电信、零售、金融、制造、物流、医疗、教育等各个领域,不得不说,人工智能时代已经到来了。
推荐几本有名的关系人工智能AI的书:
一、哥德尔、埃舍尔、巴赫集异璧之大成
人工智能领域中的奇书,也是影响极其深远的著作。哥德尔是大数学家,埃舍尔是荷兰著名的版画家,以绘制各种“不可能”的画著称,巴赫却是大名鼎鼎的音乐家。将这三者深刻地联系到一起的是那条”永恒的金带“,也就是那个横亘于宗教、科学、人文、艺术之上的怪圈,那个让人费解的不可能语句,然而作者却指出正是这种怪圈才是生命与智能的基础,也正是这个怪圈才是实现人工智能的根本。该书不仅对哲学与计算机科学产生了极大的影响,以至于著名深度学习软件TensorFlow的Logo都在模仿此书的封面,它更是对所谓的”后现代艺术“产生了极大的冲击。无论是”盗梦空间“还是”前目的地“,你都能看到此书的影子。更有趣的是,这本介绍人工智能思想的1000多页巨著却由于其高超的语言技巧而获得了”普利策文学奖“。
二、终极算法
当今人工智能革命背后的驱动技术正是机器学习,而要想理解什么是机器学习,以及它将怎样影响我们未来社会,就需要读一读《终极算法》这本书。当我们用手机输入汉字的时候,机器学习能动态联想出你最常用的词组;当我们打开微信扫描二维码的时候,机器学习程序正在帮助你快速地定位和识别;当你用美颜相机拍照的时候,机器学习帮助你优化照片;当你用淘宝购物的时候,机器学习在给你推荐商品。我们已经生活在一个由算法掌控的世界中,这些机器学习程序能够聪明地适应我们人类的需要而发生改变,以至于它可以比人做得更好,比你更了解你自己。在《终级算法》中,全球著名的算法问题专家、机器学习领域的先驱人物佩德罗多明戈斯,为我们揭开了算法的神秘面纱,让我们一窥谷歌以及你的智能手机背后的机器学习原理。他阐释了机器学习的五大学派思想,解释了它们如何将神经科学、心理学、物理等领域的理论转变为算法并为你服务,并提出了“终级算法”的设想,探讨了终级算法对未来商业、科学、社会以及对每个人的意义。对于想要理解未来将发生怎样的变革、以及想走在变革前沿的人来说,这是一本必不可少的思想指南。
三、人工智能时代
随着Alphago以4:1的大比分最终战胜人类,人类迎来了人工智能时代。我们很快就会与各式各样的智能机器共存。当机器人霸占了你的工作,你该怎么办?机器人犯罪,谁才该负责?人工智能时代,人类价值如何重新定义?在《人工智能时代》一书中,智能时代领军人物、硅谷连续创业者杰瑞卡普兰指出:智能时代的到来,给人类社会带来了两大灾难性冲击:持续性失业与不断加剧的贫富差距。机器正在很大程度上替代人类的工作,不管你是蓝领还是白领。而针对未来社会将要发生的这些问题,卡普兰在《人工智能时代》一书中从企业、税收和保险等机制上构建起了一个有益的经济生态,让社会中的每一个人都能从技术发展中获益。《人工智能时代》一书提出的建议和解决方案给遭遇挑战的人们更多抚慰和安全感!
四、走近2050,注意力、互联网与人工智能
我们将不得不面对这样的现实:我们的工作岗位将会越来越多地被机器所替代,那么这些丢掉工作的人们究竟能干什么?《走近2050》这本书给出了非常有意思的答案€€€€这些人只需要做一件事,就是给机器付出大量的注意力€€€€因为注意力恰恰是机器不断进化的最终动力。未来的世界就像一款庞大的游戏,所有的人类活动将无法被去分成生产和消费,玩€€€€持续不断地付出注意力的过程成为了终极的主题。大量的人工智能程序将会被设计出来以巧妙地引导和利用人类的注意力资源,从而使得每个人都开开心心地付出注意力,与此同时又推动了机器的进化。集智俱乐部的探索者们将引领读者走入注意力的世界,那里是互联网的引擎,那里是人工智能的发展方向。
五、奇点临近
奇点临近恐怕是关于未来人工智能最大胆奔放的预言。摩尔定律是计算机发展的一条规律,每隔十八个月计算机的各种性能就会翻倍。将摩尔定律外推,我们就会遇到奇点,即计算机运算能力最终超过人类的那个时间点。该书的作者库兹维尔引用大量的实例和数据佐证这样一种观察,并给出了骇人听闻的预言:机器终将超越人类。那么,奇点是否存在?机器是否可以超过人类?未来的人类将去向何方?所有这些问题都能在书中找到解读。
六、情感机器
在电影《机械姬》中,故事的主人公最终爱上了由机器虚拟出来的角色。那么,现实世界中的机器人和人工智能是否会有情感呢?未来的人类是否真的会同机器双双坠入爱河?人工智能之父,MIT人工智能实验室联合创始人马文明斯基带领读者进入到了情感机器的世界。他论证到,情感、直觉和情绪并不是与众不同的东西,而只是一种人类特有的思维方式。也同时揭示了为什么人类思维有时需要理性推理,而有时又会转向情感的奥秘。通过对人类思维方式建模,他为我们剖析了人类思维的本质,为大众提供了一幅创建能理解、会思考、具备人类意识、常识性思考能力,乃至自我观念的情感机器的路线图。
七、图灵的大教堂€€€€当人工智能之父与计算机之父相遇
图灵的大教堂忠实地记录了那段激动人心的历史。我们会看到人工智能的思想萌芽是如何在那个名不见经传的小人物头脑中孕育而生,我们也将领略天才人物冯诺依曼是如何在谈笑风生中便设计出了最早的计算机体系结构的。在《图灵的大教堂》一书中,作者乔治€€戴森着重介绍了一小群人,他们使用5千字节的内存(相当于现代计算机桌面上显示的光标所分配的内存大小),在天气预测和核武器设计方面,都获得了前所未有的成功。同时,他们还利用空闲时间解决各种问题€€€€从病毒的进化到恒星的演变。戴森教授的叙述既具有历史意义,又富于预见性,为第二次世界大战后期数字宇宙的爆炸提供了新的且重要的信息。代码和计算机的兴起伴随着两大历史性的发展:生物学自我复制序列的破译和氢弹的发明。很具破坏性和很具建设性的人类发明同时出现并不是巧合。
八、复杂€€€€诞生于混沌与秩序边缘的科学
尽管现在的人工智能已经取得了突飞猛进的发展,但它仍然是一种严重依赖于经验和试错的工程技术,而不是科学因为我们尚不知道如何根据第一性原理推导出人工智能。那么,如果你想知道设计智能系统背后的困境是什么,就来读读《复杂》这本书吧。这是一部传记体的科普读物,记述了圣塔菲研究所一座位于阿拉莫斯荒漠之上的学术胜地的成长故事。复杂是横亘于生物、互联网、计算机、社会、经济各类系统之中的共有规律,也是我们打开生命之门,理解人工智能第一性原理的根本所在。我们将读到科学家是如何用简单的方程创造出古老的微型生物体,我们也将看到数十行代码是如何给虚拟的飞虫赋予生命。复杂既是横亘于我们人类和现实世界之中的隐形屏障,又是通向神秘的人工智能之门的必经之路。
九、心智社会€€€€从细胞到人工智能,人类思维的优雅解读我们应该如何创造智能?人工智能之父马文明斯基提出了自己的观点,我们应该在机器人的头脑中创造一个社会,一个心智的社会。这是一种基于整体论的思想,即我们的大脑是成千上万不具备思维的小机器拼合而成的整体,正是这个整体才展现出了情感、思维、喜好、意识等高级智能现象。“没有心智社会就没有智能。智慧从愚笨中来。”
十、科学的极致€€€€漫谈人工智能
这是一本爱智求真小伙伴们的集体智慧结晶。让我们忘掉大段大段的公式和调试不完的程序,从人类灵魂的最深处探索人工智能吧。我们究竟如何定义智能?意识和智能是什么关系?哥德尔定理是否早已经限制住了人工智能的可能?简单代码究竟如何创造复杂的生命和智慧行为?人工智能如何预报天气?我们怎样才能创建一个虚拟星球?从人工智能的历史,到小虫自动机模型,再到令人烧脑的哥德尔定理,书中没有华丽的辞藻和学术权威的架子,但却在字里行间渗透出那股热爱科学、乐于探索的赤子之心。正是这种骨子里的探索精神打动了杨澜姐姐,她在自己的人工智能读物清单中首推了这本书;也正是这本书打动了无数读者,使得它一版再版,并远销海峡的对岸。
转行到人工智能的相关领域,需要具备哪些条件
切入人工智能领域有两种方式
1自主研发。这要求有一定实力与团队,周期稍长。
2加盟代理。针对大多数人来说比较合适,投入也不高,利润大,很适合的创业项目。
代理一定要选择具有自主研发团队,完善的售后体系,高灵敏语音识别技术等
外行如何进入人工智能行业
一、外行怎样进入人工智能行业,先高清人工智能有哪些方向?
人工智能专业就业方向,人工智能方向,人工智能的发展方向,人工智能研究方向,人工智能方向研究生,计算机人工智能方向,人工智能未来发展方向,人工智能考研方向,人工智能有哪些方向,人工智能未来方向,人工智能创业方向,人工智能方向的专业,人工智能应用方向,人工智能投资方向,人工智能对就业的影响。
二、外行如何进入人工智能行业,不是简单做一件事。
1、海量的数据。这基本是千万以上的数据,所以当你听很多人说大数据(有一万个样本),都是没有用的,千万级别的数据。
2、这时候还需要顶尖的科学家,不是一个程序员、工程师就可以做的。
3、要有非常清晰领域的边界,因为人工智能只能懂一件事情,让它跨领域是做不到的。就像现在我跟你说“中午我不想吃汉堡”,你们都能听懂,但是如果你跟一个人工智能这样跳跃领域去讲,它是搞不懂的。
4、要有非常好的标注,比如你用百度时候每一次的点击,去淘宝时每一次的购买,你在滴滴每次成功的搭上车,都是告诉系统我成功了。当你每次在百度没有点击,在淘宝没有购买,在滴滴没有打上车,也是告诉系统这是一个标注。没有标注的数据,意义是不大的。
5、用这么大的数据,要有非常多的计算量,这时候人工智能才可以形成。
可能很多人说,人工智能是什么机器人、无人驾驶,这个好长远啊。其实不是的,你每次在用百度、淘宝、滴滴的时候,它背后都是一个人工智能的引擎。
人工智能是一个很大的概念,现在很多的公司所谓的AI应用还是停留在比较初级的阶段,进行一些信息(数据)的分类,筛选,模式识别之类,许多语言都有成型的代码包,开源代码之类,用起来并没有太大的技术含量,要想达到实际的应用效果,更多的是需要大数据的支持,不断在算法上进行优化,而要在算法上进行创新基本上和你学什么语言(java、c、汇编)是无关的,可能更多的需要数学基础。像IBM、Google等大公司可能走得更远一些,例如谷歌的下一步将迈向何方里面介绍的,这些基本上就是非常前沿的人工智能的成果了。
现在比较火的一些智能设备,智能家居,我并不觉得算是人工智能,更多的是各类传感器加上程序规则的应用,可能这类行业会更贴近生活更有市场一些吧,前景倒是非常看好的。不过和做软件一样,并不是技术有多牛就一定能做出好的软件产品,一定要深入了解用户需求,注重用户体验,以你的背景来说,我觉得可能往这个方向发展会有更好的效果。
三、外行要转行到人工智能行业需要学习什么?
目前,人工智能已经成为越来越火的一个方向。普通程序员,外行从业者,如何转向人工智能方向,最好遵循下面一些学习方法。
1、学习目的
目的是给出一个简单的,平滑的,易于实现的学习方法,帮助“普通”程序员或外行踏入AI领域这个门。我建议外行最好先学习拥有普通程序员的知识,这里,我对普通程序员的定义是:拥有大学本科知识;平时工作较忙;自己能获取的数据有限。
2、AI领域简介
AI,也就是人工智能,并不仅仅包括机器学习。曾经,符号与逻辑被认为是人工智能实现的关键,而如今则是基于统计的机器学习占据了主导地位。最近火热的深度学习正是机器学习中的一个子项。目前可以说,学习AI主要的是学习机器学习。
但是,人工智能并不等同于机器学习,这点在进入这个领域时一定要认识清楚。关于AI领域的发展历史介绍推荐看周老师写的《机器学习简介》。下面一个问题是:AI的门好跨么?其实很不好跨。我们以机器学习为例。
在学习过程中,你会面对大量复杂的公式,在实际项目中会面对数据的缺乏,以及艰辛的调参等。如果仅仅是因为觉得这个方向未来会“火”的话,那么这些困难会容易让人放弃。考虑到普通程序员的特点,而要学习如此困难的学科,是否就是没有门路的?答案是否定的。只要制定合适的学习方法即可。
3、学习方法
学习方法的设定简单说就是回答以下几个问题:我要学的是什么?我怎样学习?我如何去学习?这三个问题概括说就是:学习目标,学习方针与学习计划。学习目标比较清楚,就是踏入AI领域这个门。这个目标不大,因此实现起来也较为容易。“过大的目标时就是为了你日后放弃它时找到了足够的理由”。
学习方针可以总结为“兴趣为先,践学结合”。简单说就是先培养兴趣,然后学习中把实践穿插进来,螺旋式提高。这种方式学习效果好,而且不容易让人放弃。有了学习方针以后,就可以制定学习计划,也称为学习路线。下面就是学习路线的介绍。
四.学习路线
我推荐的学习路线是这样的,如下图:
?
请点击此处输入图片描述
图1AI领域学习路线图
这个学习路线是这样设计的:首先了解这个领域,建立起全面的视野,培养起充足的兴趣,然后开始学习机器学习的基础,这里选择一门由浅入深的课程来学习,课程最好有足够的实验能够进行实战。基础打下后,对机器学习已经有了充足的了解,可以用机器学习来解决一个实际的问题。
这时还是可以把机器学习方法当作一个黑盒子来处理的。实战经验积累以后,可以考虑继续进行学习。这时候有两个选择,深度学习或者继续机器学习。深度学习是目前最火热的机器学习方向,其中一些方法已经跟传统的机器学习不太一样,因此可以单独学习。除了深度学习以外,机器学习还包括统计学习,集成学习等实用方法。
如果条件足够,可以同时学习两者,一些规律对两者是共通的。学习完后,你已经具备了较强的知识储备,可以进入较难的实战。这时候有两个选择,工业界的可以选择看开源项目,以改代码为目的来读代码;学术界的可以看特定领域的论文,为解决问题而想发论文。
无论哪者,都需要知识过硬,以及较强的编码能力,因此很能考察和锻炼水平。经过这个阶段以后,可以说是踏入AI领域的门了。“师傅领进门,修行在个人”。之后的路就要自己走了。
下面是关于每个阶段的具体介绍:
领域了解
在学习任何一门知识之前,首先第一步就是了解这个知识是什么?它能做什么事?它的价值在什么地方?如果不理解这些的话,那么学习本身就是一个没有方向的舟,不知道驶向何处,也极易有沉船的风险。了解这些问题后,你才能培养出兴趣,兴趣是最好的引路人,学习的动力与持久力才能让你应付接下来的若干个阶段。关于机器学习是什么,能做什么,它与深度学习以及人工智能的关系,可以看我写的博客从机器学习谈起:
知识准备
如果你离校过久,或者觉得基础不牢,最好事先做一下准备复习工作。“工欲善其事,必先利其器”。以下的准备工作不多,但足以应付后面阶段的学习。
数学:复习以下基本知识。线性代数:矩阵乘法;高数:求导;概率论:条件与后验概率。其他的一些知识可以在后面的学习的过程中按需再补;
英文:常备一个在线英文词典,例如爱词霸,能够不吃力的看一些英文的资料网页;
FQ:可以随时随地上Google,这是一个很重要的工具。不是说百度查的不能看,而是很多情况下Google搜出来的资料比百度搜的几十页的资料还管用,尤其是在查英文关键字时。节省时间可是很重要的学习效率提升;
机器学习
机器学习的第一门课程首推AndrewNg的机器学习。这门课程有以下特点:难度适中,同时有足够的实战例子,非常适合第一次学习的人。cs229这门课程我这里不推荐,为什么,原因有以下:
时间:cs229的时间太早,一些知识已经跟不上当今的发展,目前最为火热的神经网络一笔带过。而Cousera上神经网络可是用了两个课时去讲的!而且非常详细;
教学:Ng在cs229时候的教学稍显青涩,可能是面对网络教学的原因。有很多问题其实他都没有讲清楚,而且下面的人的提问其实也很烦躁,你往往不关心那些人的问题。这点在Coursera上就明显得到了改善,你会发现Ng的教学水平大幅度改善了,他会对你循循善诱,推心置腹,由浅入深的教学,在碰到你不明白的单词术语时也会叫你不要担心,更重要的,推导与图表不要太完善,非常细致清晰,这点真是强力推荐;
字幕:cs229的字幕质量比Coursera上的差了一截。Coursera上中文字幕翻译经过了多人把关,质量很有保证;
作业:cs229没有作业,虽然你可以做一些,但不会有人看。这点远不如Coursera上每周有deadline的那种作业,而且每期作业提交上去都有打分。更重要的是,每期作业都有实际的例子,让你手把手练习,而且能看到自己的成果,成就感满满!
实践做项目
学习完了基础课程,你对机器学习就有了初步了解。现在使用它们是没有问题的,你可以把机器学习算法当作黑盒子,放进去数据,就会有结果。在实战中你更需要去关心如何获取数据,以及怎么调参等。如果有时间,自己动手做一个简单的实践项目是最好的。
这里需要选择一个应用方向,是图像(计算机视觉),音频(语音识别),还是文本(自然语言处理)。这里推荐选择图像领域,这里面的开源项目较多,入门也较简单,可以使用OpenCV做开发,里面已经实现好了神经网络,SVM等机器学习算法。项目做好后,可以开源到到Github上面,然后不断完善它。实战项目做完后,你可以继续进一步深入学习,这时候有两个选择,深度学习和继续机器学习;
深度学习
深度学习:深度学习是目前最火热的研究方向。有以下特点:知识更新快,较为零碎,没有系统讲解的书。因此学习的资源也相对零散,下面是一些资源介绍。其中不推荐的部分并不代表不好,而是在这个初学阶段不合适:
推荐,UFLDL:非常好的DL基础教程,也是AndrewNg写的。有很详尽的推导,有翻译,且翻译质量很高;推荐,Deeplearning(paper):2015年Nature上的论文,由三位深度学习界的大牛所写,读完全篇论文,给人高屋建瓴,一览众山小的感觉,强烈推荐。如果只能读一篇论文了解深度学习,我推荐此篇。这篇论文有同名的中文翻译;推荐,Neuralnetworksanddeeplearning:这本书的作者非常擅长以浅显的语言表达深刻的道理,虽然没有翻译,但是阅读并不困难;推荐,RecurrentNeuralNetworks:结合一个实际案例告诉你RNN是什么,整篇教程学完以后,会让你对RNN如何产生作用的有很清晰的认识,而这个效果,甚至是读几篇相关论文所没有的;
不推荐,NeuralNetworksforMachineLearning–UniversityofToronto|Coursera:深度学习创始人教的课,最大的问题是太难,而且老先生的吐字有时不是很标准;不推荐,DeepLearning(book):同样也是由深度学习大牛所写的书,但感觉就像是第二作者,也就是他的学生所写的。很多内容都讲了,但是感觉也没讲出什么内容来,只是告诉你来自那篇论文,这样的话可能直接阅读论文更合适。不推荐,cs231n:李菲菲的课程,很有名,专门讲CNN。但是这门课程有一个最大的问题,就是没有字幕,虽然有youtube的自动翻译字幕,但有还不如没有。
继续机器学习
深度学习未必就是未来的一定主流,至少一些大牛是这么认为的。传统的机器学习有如下特点,知识系统化,有相对经典的书。其中统计学习(代表SVM)与集成学习(代表adaboost)是在实践中使用非常多的技术。下面是相关资源:
推荐,机器学习(周志华):如果是在以前,机器学习方面的经典教材首推PRML,但现在周老师的书出来以后,就不再是这样了。首先推荐读周老师的书。这本书有一个特点,那就是再难的道理也能用浅显精炼的语言表达出来。正如周老师的名言:“体现你水平的地方是把难的东西讲容易了,而不是把容易的东西讲难,想把一个东西讲难实在太简单”;
不推荐,PatternRecognitionAndMachineLearning:当前阶段不推荐。PRML是以贝叶斯的观点看待很多机器学习方法,这也是它的一大特色。但对于初学者来说,这种观点其实并无必要。而且此书没有中文翻译,当前阶段硬啃很容易放弃;
开源项目
当知识储备较为充足时,学习可以再次转入实践阶段。这时候的实践仍然可以分两步走,学习经典的开源项目或者发表高质量的论文。开源项目的学习应该以尽量以优化为目的,单纯为读代码而学习效果往往不太好。好的开源项目都可以在Github里搜索。这里以深度学习为例。深度学习的开源优秀库有很多,例如torch,theano等等,这里列举其中的两个:
推荐,DeepLearnToolbox:较早的一个深度学习库,用matlab语言撰写,较为适合从刚学习的课程转入学习。遗憾的是作者不再维护它了;
推荐,tensorflow:Google的开源库,时至今日,已经有40000多个star,非常惊人,支持移动设备;
会议论文
较好的课程都会推荐你一些论文。一些著名的技术与方法往往诞生于一些重要的会议。因此,看往年的会议论文是深入学习的方法。在这时,一些论文中的内容会驱使你学习数学中你不擅长的部分。有时候你会觉得数学知识储备不够,因此往往需要学习一些辅助课程。
当你看完足够的论文以后,在这个阶段,如果是在校学生,可以选择某个课题,以发论文为目的来学习研究。一般来说,论文是工作的产物。有时候一篇基于实验的论文往往需要你写代码或者基于开源项目。因此开源项目的学习与会议论文的工作两者之间是有相关的。
两者可以同时进行学习。关于在哪里看论文,可以看一下CCF推荐排名,了解一下这个领域里有哪些优秀的会议。
下面介绍两个图像与机器学习领域的著名顶级会议:
CVPR:与另两个会议ICCV和ECCV合称计算机视觉领域的三大会,注意会议每年的主页是变动的,因此搜索需要加上年份;
ConferenceonNeuralInformationProcessingSystems:简称NIPS,许多重要的工作发表在这上面,例如关于CNN的一篇重要论文就是发表在上面;
自由学习
到这里了,可以说是进入这个门了。下面可以依据兴趣来自由学习。前阶段不推荐的学习资源也可随意学习,下面是点评:
cs229:Ng写的讲义很不错,其中关于SVM的推导部分很清晰,想学习SVM推荐;
NeuralNetworksforMachineLearning:大牛的视角跟人就是不一样,看看Hinton对神经网络是怎么看的,往往会让你有种原来如此的感悟。其实看这门课程也等同于读论文,因为几乎每节课的参考资料里都有论文要你读;
CS231n:ConvolutionalNeuralNetworksforVisualRecognition:最新的知识,还有详细的作业。国内应该有团队对字幕进行了翻译,可以找找;
PRML:作为一门经典的机器学习书籍,是很有阅读必要的,会让你对机器学习拥有一个其他的观察视角;
四、总结
以上意见和见解的目的是帮助对AI领域了解不深,但又想进入的同学踏入这个门。这里只说踏入,是因为这个领域的专精实在非常困难,需要数年的积累与努力。在进行领域学习前,充分认识自己的特点,制定合适的学习方法是十分重要的。
首先得对这个领域进行充分了解,培养兴趣。在学习时,保持着循序渐进的学习方针,不要猛进的学习过难资源;结合着学习与实践相辅的策略,不要只读只看,实际动手才有成就感。学习某个资源时要有充分的目的,不是为了学开源项目而看代码,而是为了写开源项目而看;不是为了发论文而写论文,而是为了做事情而写论文。
如果一个学习资源对你过难,并不代表一定是你的问题,可能是学习资源的演讲或撰写人的问题。能把难的问题讲简单的人才是真正有水平的人。所以,一定要学习优质资源,而不是不分青红皂白的学习。最后,牢记以兴趣来学习。学习的时间很长,过程也很艰难,而只有兴趣才是让你持之以恒,攻克难关的最佳助力。
谨以此提出一些意见与在学海中乘舟的诸位共勉。实际中还需自己探索。我就是一名普通技术员,刚刚转入AI领域,还有很多不足。希望此文可以帮助到大家。在很近的未来,在无数科学家的努力与求索之下,人工智能会快速在各行各业开花结果,循序渐进地改变人类的工作、职业习惯、行为方式,甚至是思维方式。人类因此更加强大,生活更加便捷,机会选择更加丰富。