人工智能专业容易挂科吗
随着人工智能产业的兴起,数学的学科应用价值再一次得到凸显。人工智能作为未来发展的核心趋势之一,这个专业近些年的大热专业。
许多AI的研究基本上都是围绕着数学在进行。
那么,想要学好人工智能,数学必定是基础!否则很容易挂科哦!
如果考生将来想向人工智能领域发展,又喜欢理论研究,除计算机科学外,数学专业也同样是一个不错的切入点。
外行如何进入人工智能行业
一、外行怎样进入人工智能行业,先高清人工智能有哪些方向?
人工智能专业就业方向,人工智能方向,人工智能的发展方向,人工智能研究方向,人工智能方向研究生,计算机人工智能方向,人工智能未来发展方向,人工智能考研方向,人工智能有哪些方向,人工智能未来方向,人工智能创业方向,人工智能方向的专业,人工智能应用方向,人工智能投资方向,人工智能对就业的影响。
二、外行如何进入人工智能行业,不是简单做一件事。
1、海量的数据。这基本是千万以上的数据,所以当你听很多人说大数据(有一万个样本),都是没有用的,千万级别的数据。
2、这时候还需要顶尖的科学家,不是一个程序员、工程师就可以做的。
3、要有非常清晰领域的边界,因为人工智能只能懂一件事情,让它跨领域是做不到的。就像现在我跟你说“中午我不想吃汉堡”,你们都能听懂,但是如果你跟一个人工智能这样跳跃领域去讲,它是搞不懂的。
4、要有非常好的标注,比如你用百度时候每一次的点击,去淘宝时每一次的购买,你在滴滴每次成功的搭上车,都是告诉系统我成功了。当你每次在百度没有点击,在淘宝没有购买,在滴滴没有打上车,也是告诉系统这是一个标注。没有标注的数据,意义是不大的。
5、用这么大的数据,要有非常多的计算量,这时候人工智能才可以形成。
可能很多人说,人工智能是什么机器人、无人驾驶,这个好长远啊。其实不是的,你每次在用百度、淘宝、滴滴的时候,它背后都是一个人工智能的引擎。
人工智能是一个很大的概念,现在很多的公司所谓的AI应用还是停留在比较初级的阶段,进行一些信息(数据)的分类,筛选,模式识别之类,许多语言都有成型的代码包,开源代码之类,用起来并没有太大的技术含量,要想达到实际的应用效果,更多的是需要大数据的支持,不断在算法上进行优化,而要在算法上进行创新基本上和你学什么语言(java、c、汇编)是无关的,可能更多的需要数学基础。像IBM、Google等大公司可能走得更远一些,例如谷歌的下一步将迈向何方里面介绍的,这些基本上就是非常前沿的人工智能的成果了。
现在比较火的一些智能设备,智能家居,我并不觉得算是人工智能,更多的是各类传感器加上程序规则的应用,可能这类行业会更贴近生活更有市场一些吧,前景倒是非常看好的。不过和做软件一样,并不是技术有多牛就一定能做出好的软件产品,一定要深入了解用户需求,注重用户体验,以你的背景来说,我觉得可能往这个方向发展会有更好的效果。
三、外行要转行到人工智能行业需要学习什么?
目前,人工智能已经成为越来越火的一个方向。普通程序员,外行从业者,如何转向人工智能方向,最好遵循下面一些学习方法。
1、学习目的
目的是给出一个简单的,平滑的,易于实现的学习方法,帮助“普通”程序员或外行踏入AI领域这个门。我建议外行最好先学习拥有普通程序员的知识,这里,我对普通程序员的定义是:拥有大学本科知识;平时工作较忙;自己能获取的数据有限。
2、AI领域简介
AI,也就是人工智能,并不仅仅包括机器学习。曾经,符号与逻辑被认为是人工智能实现的关键,而如今则是基于统计的机器学习占据了主导地位。最近火热的深度学习正是机器学习中的一个子项。目前可以说,学习AI主要的是学习机器学习。
但是,人工智能并不等同于机器学习,这点在进入这个领域时一定要认识清楚。关于AI领域的发展历史介绍推荐看周老师写的《机器学习简介》。下面一个问题是:AI的门好跨么?其实很不好跨。我们以机器学习为例。
在学习过程中,你会面对大量复杂的公式,在实际项目中会面对数据的缺乏,以及艰辛的调参等。如果仅仅是因为觉得这个方向未来会“火”的话,那么这些困难会容易让人放弃。考虑到普通程序员的特点,而要学习如此困难的学科,是否就是没有门路的?答案是否定的。只要制定合适的学习方法即可。
3、学习方法
学习方法的设定简单说就是回答以下几个问题:我要学的是什么?我怎样学习?我如何去学习?这三个问题概括说就是:学习目标,学习方针与学习计划。学习目标比较清楚,就是踏入AI领域这个门。这个目标不大,因此实现起来也较为容易。“过大的目标时就是为了你日后放弃它时找到了足够的理由”。
学习方针可以总结为“兴趣为先,践学结合”。简单说就是先培养兴趣,然后学习中把实践穿插进来,螺旋式提高。这种方式学习效果好,而且不容易让人放弃。有了学习方针以后,就可以制定学习计划,也称为学习路线。下面就是学习路线的介绍。
四.学习路线
我推荐的学习路线是这样的,如下图:
?
请点击此处输入图片描述
图1AI领域学习路线图
这个学习路线是这样设计的:首先了解这个领域,建立起全面的视野,培养起充足的兴趣,然后开始学习机器学习的基础,这里选择一门由浅入深的课程来学习,课程最好有足够的实验能够进行实战。基础打下后,对机器学习已经有了充足的了解,可以用机器学习来解决一个实际的问题。
这时还是可以把机器学习方法当作一个黑盒子来处理的。实战经验积累以后,可以考虑继续进行学习。这时候有两个选择,深度学习或者继续机器学习。深度学习是目前最火热的机器学习方向,其中一些方法已经跟传统的机器学习不太一样,因此可以单独学习。除了深度学习以外,机器学习还包括统计学习,集成学习等实用方法。
如果条件足够,可以同时学习两者,一些规律对两者是共通的。学习完后,你已经具备了较强的知识储备,可以进入较难的实战。这时候有两个选择,工业界的可以选择看开源项目,以改代码为目的来读代码;学术界的可以看特定领域的论文,为解决问题而想发论文。
无论哪者,都需要知识过硬,以及较强的编码能力,因此很能考察和锻炼水平。经过这个阶段以后,可以说是踏入AI领域的门了。“师傅领进门,修行在个人”。之后的路就要自己走了。
下面是关于每个阶段的具体介绍:
领域了解
在学习任何一门知识之前,首先第一步就是了解这个知识是什么?它能做什么事?它的价值在什么地方?如果不理解这些的话,那么学习本身就是一个没有方向的舟,不知道驶向何处,也极易有沉船的风险。了解这些问题后,你才能培养出兴趣,兴趣是最好的引路人,学习的动力与持久力才能让你应付接下来的若干个阶段。关于机器学习是什么,能做什么,它与深度学习以及人工智能的关系,可以看我写的博客从机器学习谈起:
知识准备
如果你离校过久,或者觉得基础不牢,最好事先做一下准备复习工作。“工欲善其事,必先利其器”。以下的准备工作不多,但足以应付后面阶段的学习。
数学:复习以下基本知识。线性代数:矩阵乘法;高数:求导;概率论:条件与后验概率。其他的一些知识可以在后面的学习的过程中按需再补;
英文:常备一个在线英文词典,例如爱词霸,能够不吃力的看一些英文的资料网页;
FQ:可以随时随地上Google,这是一个很重要的工具。不是说百度查的不能看,而是很多情况下Google搜出来的资料比百度搜的几十页的资料还管用,尤其是在查英文关键字时。节省时间可是很重要的学习效率提升;
机器学习
机器学习的第一门课程首推AndrewNg的机器学习。这门课程有以下特点:难度适中,同时有足够的实战例子,非常适合第一次学习的人。cs229这门课程我这里不推荐,为什么,原因有以下:
时间:cs229的时间太早,一些知识已经跟不上当今的发展,目前最为火热的神经网络一笔带过。而Cousera上神经网络可是用了两个课时去讲的!而且非常详细;
教学:Ng在cs229时候的教学稍显青涩,可能是面对网络教学的原因。有很多问题其实他都没有讲清楚,而且下面的人的提问其实也很烦躁,你往往不关心那些人的问题。这点在Coursera上就明显得到了改善,你会发现Ng的教学水平大幅度改善了,他会对你循循善诱,推心置腹,由浅入深的教学,在碰到你不明白的单词术语时也会叫你不要担心,更重要的,推导与图表不要太完善,非常细致清晰,这点真是强力推荐;
字幕:cs229的字幕质量比Coursera上的差了一截。Coursera上中文字幕翻译经过了多人把关,质量很有保证;
作业:cs229没有作业,虽然你可以做一些,但不会有人看。这点远不如Coursera上每周有deadline的那种作业,而且每期作业提交上去都有打分。更重要的是,每期作业都有实际的例子,让你手把手练习,而且能看到自己的成果,成就感满满!
实践做项目
学习完了基础课程,你对机器学习就有了初步了解。现在使用它们是没有问题的,你可以把机器学习算法当作黑盒子,放进去数据,就会有结果。在实战中你更需要去关心如何获取数据,以及怎么调参等。如果有时间,自己动手做一个简单的实践项目是最好的。
这里需要选择一个应用方向,是图像(计算机视觉),音频(语音识别),还是文本(自然语言处理)。这里推荐选择图像领域,这里面的开源项目较多,入门也较简单,可以使用OpenCV做开发,里面已经实现好了神经网络,SVM等机器学习算法。项目做好后,可以开源到到Github上面,然后不断完善它。实战项目做完后,你可以继续进一步深入学习,这时候有两个选择,深度学习和继续机器学习;
深度学习
深度学习:深度学习是目前最火热的研究方向。有以下特点:知识更新快,较为零碎,没有系统讲解的书。因此学习的资源也相对零散,下面是一些资源介绍。其中不推荐的部分并不代表不好,而是在这个初学阶段不合适:
推荐,UFLDL:非常好的DL基础教程,也是AndrewNg写的。有很详尽的推导,有翻译,且翻译质量很高;推荐,Deeplearning(paper):2015年Nature上的论文,由三位深度学习界的大牛所写,读完全篇论文,给人高屋建瓴,一览众山小的感觉,强烈推荐。如果只能读一篇论文了解深度学习,我推荐此篇。这篇论文有同名的中文翻译;推荐,Neuralnetworksanddeeplearning:这本书的作者非常擅长以浅显的语言表达深刻的道理,虽然没有翻译,但是阅读并不困难;推荐,RecurrentNeuralNetworks:结合一个实际案例告诉你RNN是什么,整篇教程学完以后,会让你对RNN如何产生作用的有很清晰的认识,而这个效果,甚至是读几篇相关论文所没有的;
不推荐,NeuralNetworksforMachineLearning–UniversityofToronto|Coursera:深度学习创始人教的课,最大的问题是太难,而且老先生的吐字有时不是很标准;不推荐,DeepLearning(book):同样也是由深度学习大牛所写的书,但感觉就像是第二作者,也就是他的学生所写的。很多内容都讲了,但是感觉也没讲出什么内容来,只是告诉你来自那篇论文,这样的话可能直接阅读论文更合适。不推荐,cs231n:李菲菲的课程,很有名,专门讲CNN。但是这门课程有一个最大的问题,就是没有字幕,虽然有youtube的自动翻译字幕,但有还不如没有。
继续机器学习
深度学习未必就是未来的一定主流,至少一些大牛是这么认为的。传统的机器学习有如下特点,知识系统化,有相对经典的书。其中统计学习(代表SVM)与集成学习(代表adaboost)是在实践中使用非常多的技术。下面是相关资源:
推荐,机器学习(周志华):如果是在以前,机器学习方面的经典教材首推PRML,但现在周老师的书出来以后,就不再是这样了。首先推荐读周老师的书。这本书有一个特点,那就是再难的道理也能用浅显精炼的语言表达出来。正如周老师的名言:“体现你水平的地方是把难的东西讲容易了,而不是把容易的东西讲难,想把一个东西讲难实在太简单”;
不推荐,PatternRecognitionAndMachineLearning:当前阶段不推荐。PRML是以贝叶斯的观点看待很多机器学习方法,这也是它的一大特色。但对于初学者来说,这种观点其实并无必要。而且此书没有中文翻译,当前阶段硬啃很容易放弃;
开源项目
当知识储备较为充足时,学习可以再次转入实践阶段。这时候的实践仍然可以分两步走,学习经典的开源项目或者发表高质量的论文。开源项目的学习应该以尽量以优化为目的,单纯为读代码而学习效果往往不太好。好的开源项目都可以在Github里搜索。这里以深度学习为例。深度学习的开源优秀库有很多,例如torch,theano等等,这里列举其中的两个:
推荐,DeepLearnToolbox:较早的一个深度学习库,用matlab语言撰写,较为适合从刚学习的课程转入学习。遗憾的是作者不再维护它了;
推荐,tensorflow:Google的开源库,时至今日,已经有40000多个star,非常惊人,支持移动设备;
会议论文
较好的课程都会推荐你一些论文。一些著名的技术与方法往往诞生于一些重要的会议。因此,看往年的会议论文是深入学习的方法。在这时,一些论文中的内容会驱使你学习数学中你不擅长的部分。有时候你会觉得数学知识储备不够,因此往往需要学习一些辅助课程。
当你看完足够的论文以后,在这个阶段,如果是在校学生,可以选择某个课题,以发论文为目的来学习研究。一般来说,论文是工作的产物。有时候一篇基于实验的论文往往需要你写代码或者基于开源项目。因此开源项目的学习与会议论文的工作两者之间是有相关的。
两者可以同时进行学习。关于在哪里看论文,可以看一下CCF推荐排名,了解一下这个领域里有哪些优秀的会议。
下面介绍两个图像与机器学习领域的著名顶级会议:
CVPR:与另两个会议ICCV和ECCV合称计算机视觉领域的三大会,注意会议每年的主页是变动的,因此搜索需要加上年份;
ConferenceonNeuralInformationProcessingSystems:简称NIPS,许多重要的工作发表在这上面,例如关于CNN的一篇重要论文就是发表在上面;
自由学习
到这里了,可以说是进入这个门了。下面可以依据兴趣来自由学习。前阶段不推荐的学习资源也可随意学习,下面是点评:
cs229:Ng写的讲义很不错,其中关于SVM的推导部分很清晰,想学习SVM推荐;
NeuralNetworksforMachineLearning:大牛的视角跟人就是不一样,看看Hinton对神经网络是怎么看的,往往会让你有种原来如此的感悟。其实看这门课程也等同于读论文,因为几乎每节课的参考资料里都有论文要你读;
CS231n:ConvolutionalNeuralNetworksforVisualRecognition:最新的知识,还有详细的作业。国内应该有团队对字幕进行了翻译,可以找找;
PRML:作为一门经典的机器学习书籍,是很有阅读必要的,会让你对机器学习拥有一个其他的观察视角;
四、总结
以上意见和见解的目的是帮助对AI领域了解不深,但又想进入的同学踏入这个门。这里只说踏入,是因为这个领域的专精实在非常困难,需要数年的积累与努力。在进行领域学习前,充分认识自己的特点,制定合适的学习方法是十分重要的。
首先得对这个领域进行充分了解,培养兴趣。在学习时,保持着循序渐进的学习方针,不要猛进的学习过难资源;结合着学习与实践相辅的策略,不要只读只看,实际动手才有成就感。学习某个资源时要有充分的目的,不是为了学开源项目而看代码,而是为了写开源项目而看;不是为了发论文而写论文,而是为了做事情而写论文。
如果一个学习资源对你过难,并不代表一定是你的问题,可能是学习资源的演讲或撰写人的问题。能把难的问题讲简单的人才是真正有水平的人。所以,一定要学习优质资源,而不是不分青红皂白的学习。最后,牢记以兴趣来学习。学习的时间很长,过程也很艰难,而只有兴趣才是让你持之以恒,攻克难关的最佳助力。
谨以此提出一些意见与在学海中乘舟的诸位共勉。实际中还需自己探索。我就是一名普通技术员,刚刚转入AI领域,还有很多不足。希望此文可以帮助到大家。在很近的未来,在无数科学家的努力与求索之下,人工智能会快速在各行各业开花结果,循序渐进地改变人类的工作、职业习惯、行为方式,甚至是思维方式。人类因此更加强大,生活更加便捷,机会选择更加丰富。
人工智能涉及哪些学科
人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。
人工智能是一个交叉学科,涉及到的专业主要有三大类:计算机类、自动化类以及数学类。而具体学科包含以下学科但又不限于以下学科,仅供参考:
计算机科学与技术、软件工程、信息安全、物联网工程、机器学习、智能科学与技术、空间信息与数字技术、电子与计算机工程电子信息类:通信工程、信息工程、水声工程、电子信息工程、编程语言、微电子科学与工程、光电信息科学与工程、自然语言处理、电磁度场与无线技术、电子信息科学与技术、电波传播与天线、集成电路设计与集成系统;自动化、轨道交通信号与控制;数学与应用数学、信息与计算科学、数理基础科学、数据科学与大数据技术等学科。
以上为个人对人工智能涉及学科的一些个人见解和一些相关资料,如有不准备的地方欢迎指正!感谢!希望能对你有所帮助!