人工智能在金融领域应用?不属于人工智能在金融领域应用

当银行遇到AI,人工智能是否重构金融生态

AⅠ将先撕裂、再重构传统银行,这已经是确定无疑的。

未来传统银行下岗潮的惨烈,将堪比20年前东三省国有企业的下岗潮。

过去,传统银行一直有“三多”的优势,利差收入多、线下网点多、在职员工多。而现在,“利差收入多”已经一去不复返,在前几年余额宝等互联网货币基金的冲击下,现在,除了极少数对公帐户偶有闲钱趴在帐上让商业银行坐享“利差”,商业银行的存款端成本越来越高,利差空间越来越小,大部分需要通过较高成本的理财或同业拆借解决。

这仅仅是传统银行受冲击的第一步。未来,在不得不接受AⅠ的系统改造之下,传统银行的线下网点将大幅减少,在职员工减少幅度将更甚,不扩张地讲,未来5年,传统银行裁员比例至少达到30%,减少100万人,未来10年,传统银行裁员比例至少达到50%,减少近200万人。

这不是危言耸听,而是大势使然。要知道我国传统银行的在职员工有多少?380万!这是银监会截止2015年底的数据,这相当于中东的科威特人口和大洋洲的新西兰人口。而其中,农业银行和工商银行的在职员工之和就接近100万人。

在这380万银行在职员工的构成中,至少近一半是银行柜员和大堂接待员。而柜员和接待员恰恰是AI最容易取代的群体,因为这一群体的工作程式化、简单化,人工智能(智能机器人)完全可以取代,现在有些商业银行,如交通银行已经尝试推出名为“娇娇”的智能客服机器人。

此外,在移动互联网的普及之下,以及AI(包括区块链技术)对传统支付结算的赋能之下,商业银行的众多传统业务,以后绝大多数只需要在线办理,而勿需去银行线下人工办理。所以,未来人员减少、网点减少,必将成为传统银行向数据银行全面转型的核心标志。

星图金融(原苏宁金融)在人工智能方面有什么具体应用吗

在人工智能技术应用方面,星图金融建立了包括“AI+营销”“AI+客服”“AI+运营”“AI+风控”等在内的全流程数字化客户服务体系,并广泛应用于支付、贷款、理财、保险等多个领域。以智能客服为例,星图金融打造的“千言”智能客服机器人,对积累多年的客服问答数据进行机器学习,并基于用户数据及全渠道部署,实现7×24小时在线解答。

人工智能会代替金融学吗

人工智能是机器是工具,金融涉及面就比较广了。要发展任何行业必先发展金融,干什么事首先需要的就是钱,个人认为人工智能取代不了金融,除非智能机器能像算命先生一样能把人算死,当然这是不可能的。两者哪个有前途取决于决策人在哪个方面有兴趣或者天赋。

人工智能在金融领域有哪些应用场景和作用

传统金融如何利用数据?

所谓前事不忘后事之师,在了解AI对传统金融行业带来的影响之前,我们可以借鉴以往的经验,看看传统金融行业对现有数据的利用情况。

在过去的几十年甚至百十年中,无数的银行家,金融工程师,数据分析师,金融从业者为我们设计了很多非常便利方便的金融产品,比如信用卡业务,个人贷款业务,在这些产品迭代的过程中他们形成了非常严谨的迭代和风险控制的方案。

他们所利用数据的特点是针对这些金融产品业务区分能力强,但是覆盖人群相对较低。

就如上图所示的冰山,传统金融行业对数据的利用率只有10%左右,而Fintech公司需要做的就是挖掘那些隐藏在冰山之下的数据,把金融产品带给更广泛的人群。

互联网金融怎么做?

随着大数据解决方案的普及,我们可以搜集更多维度的数据来更精细的进行用户画像,包括利用一些行业数据,用户的互联网浏览数据,司法执行数据,第三方信用数据,出行数据,电商平台的交易数据,电话通讯数据和社交数据。这些数据的覆盖人群会远远超过现有的金融行业所使用的数据。

而AI就是对这些数据进行组合,从而挖掘出有效的特征。

如何利用好这些维度很高的数据,需要一个智能的解决方案。因为这些数据大多是非结构化的数据,可能来自邮件、视频、文本、语音、点击浏览行为、社交网络等多种渠道。数据的量级和清洗是一个重要的环节。

而大数据的一些解决方案为我们提供了较好的基础设施。

关于AI

在此之上人工智能可以带给我们大量的自动的规则学习,同时带给我们更加强大的表达能力,而不仅仅是一些线性模型。当我们加入更多数据的时候,关于人的描述已经上升到更高维度的空间中,这时,我们就需要表达能力更强的模型,比如GBDT的模型,有几千个有权重的子树,比如深度学习网络,多层的神经元通过加工,自动抽取最优组合。

一个传统的贷款业务可能需要2-3天来审批,而一个基于人工智能模型的自动审批方案可能只需要几秒钟就可以完成。同时有些传统风控模型的迭代周期可能要数个月甚至数年,但是人工智能的模型迭代可以非常便捷和自动。

AI所做的就是极大简化这个过程,提高效率,同时可以大大提高模型验证和迭代的速度。

AIinDianrong

在点融,我们应用于风控的人工智能解决方案主要有以下三个部分:

数据搜集和处理

风险控制和预测模型

信用评级和风险定价

便利可扩展的数据存储和处理方案是重要的基础架构。

各种非结构化数据到结构化数据的灵活转换是保证应用的重要一环。

欺诈的识别是风险控制的第一步,如果利用第三方数据高准确度地识别一些有欺诈嫌疑的用户是这一个环节需要解决的问题。

灵活地支持人工智能的风控引擎和规则引擎是保证人工智能应用的业务的重要工具。点融的规则引擎同时可以支持简单的条件规则、也可以支持决策树的规则,以及更加复杂的GBDT和深度神经网络模型。

通过知识图谱我们可以将人群的关系更直接地映射到图数据里,通过这些关系的远近、和异常拓扑结构的识别,我们可以发现更多更深层次的风险模式,通过识别这些模式可以有效地减少团伙欺诈。

在风险级别识别和风险定价的模块里。我们会结合三类打分板:专家打分板,传统的逻辑回归打分板以及人工智能打分板在不同场景下针对用户进行不同级别的人群划分。针对不同级别的人群和不同产品的需求我们会试算出针对于该风险人群的定价。

我们点融也在积极地将人工智能模型作为主要风控手段迭代改进自己的系统中。

同时我们也在应用深度学习解决一些业务冷启动的问题。利用transferlearning我们可以大大加快模型在新业务数据不足的情况下收敛的速度。

总结

最后引用薛贵荣博士的博客中一段话:

“基于实例的迁移学习的基本思想是,尽管辅助训练数据和源训练数据或多或少会有些不同,但是辅助训练数据中应该还是会存在一部分比较适合用来训练一个有效的分类模型,并且适应测试数据。于是,我们的目标就是从辅助训练数据中找出那些适合测试数据的实例,并将这些实例迁移到源训练数据的学习中去。”

人工智能应用在金融方面可以有哪些提升

工作效率大幅度提升,准确率提升,方便丶实用丶灵活快捷,节省了大量的人力物力,使金融系统的效力有了很大的提升。

人工智能在金融领域应用?不属于人工智能在金融领域应用文档下载: PDF DOC TXT
文章来源: 星蕴
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至2384272385@qq.com举报,一经查实,本站将立刻删除。