人工智能的利与弊分别是什么,该如何看待
随着社会与科技的快速发展,人工智能也进入了高速发展的轨道。人工智能确确实实地给我们生活带来了很多的便利。不仅仅是从我们日常的衣食住行上有着很好的体现,而且在我们日常的安全防范领域、娱乐领域、甚至是科学研究领域,都在慢慢地和我们接轨。就在人工智能高速发展的同时,人类也开始担忧,在未来,人工智能倘若按这个进度发展下去。它会不会完全取代人类。在当下的网络中,太多的人在吹捧人工智能。那么,人工智能到底是好还是坏?而人工智能这把双刃剑的利与弊是什么?
人工智能给人类带来的利端:
1、带来更高的的商业价值
人工智能在数据集上有着一定的优势。目前的观察来说,人工智能有三大商业方向。一个是大数据的统计,第二个是对用户情绪的一个评估。第三个则是与用户之间的社交纽带。人工智能通过这三大商业方向,可以更好地了解人类。同时也可以创作出更好的软件,以此来给更多的人带来快乐。而在未来,可以增加客户体验,给客户带来快乐的企业,将会赚取更多的商业价值。
2、带来更多的就业机会
就好像人类从工农业时代进化成为现代化工业的时代一样,现代化工业时代已经给更多的人带来了新的就业机会。就好比互联网行业,解决了上千万人的就业问题。虽然很多人会认为,随着人工智能的发展,无人汽车开始慢慢普及。更加多的智能工作流程技术也在快速发展,那么会不会在此前提下大部分的工作都会被人工智能所取代。殊不知,人工智能虽然在取代大部分工作,但是同时也创造了更多的工作环境和更多的工作机遇,就好像目前大部分从事人工智能领域的人士,年薪百万也不在少数。
3、给人类带来更加美好的生活
自从有了人工智能后,各个行业,各个领域的工作效率有着很显著的提高。人类的整体财富也在指数型的增长。在此为前提下,人工智能不仅给人类的生活打下了坚实的物质基础,更是把更多的人从简单烦躁而重复的工作中,解放出来。让我们更加自由地去做更多的事情。不仅如此,人工智能在医疗上也起到很大的帮助。很多医生都不能确定的病情,人工智能可以通过它的大数据进行分析和理疗。再好比当下的人工智能无人汽车。在技术保障的前提下,这不仅大大降低了事故发生率,还节省了驾驶人员大量的驾驶时间。
人工智能给人类带来的弊端:
1、人才分化,贫富差距弊端
人工智能带来的人才分化极端。将会引起未来的人才争夺战。而社会上更多一流的人才将会偏向一边,相对资金比较薄弱的企业或者个人,将会遭受到大规模的失业。在这种情况下会导致企业巨头的垄断,以及贫富差距的分化将会非常严重。
2、带来更加频繁的战争
人工智能机器人的产生,还有一个最可怕的弊端,当人工智能被大量用武器中,未来的战争将不会大量使用到人类,而当战争不再使用到真人,从道德的角度去考虑,人工智能的战争不会受到太多的批评,随之而带来的,将会是更多的机器兵团战争。
3、带来潜在的危险性
早在2015年,德国大众的一家汽车制造工厂,一个机器人误杀一名外包公认。而作为人工智能发展大国——日本,至今为止,已经有20人死于机器人误杀事件,而有高达8000的人数被机器人致残,而如果一旦人工智能机器人落到恐怖分子的手里,那后果将会更加不堪设想。
在我们生活中,几乎所有的东西都有利弊,人工智能也一样是一把双刃剑,对待人工智能未来的发展,我们不仅要以乐观的态度面对,而且我们还要对这个时代有信心,对人工智能相关研发人员有信心,因为俗话说得好,邪不压正!
人工智能专业怎么样
人工智能一览人工智能(ArtificialIntelligence,AI)是计算机科学的重要分支和方向,其概念并没有严格统一的定义和描述。但其最终目标是比较明确的,希望通过对人的意识、思维的信息过程的模拟,让机器(计算机)具有像人脑一般的智能水平,实现与人类似的智能行为。人工智能核心技术包括:机器学习(MachineLearning,ML)一种能够赋予计算机学习的能力,以此让它完成直接编程无法完成的功能的方法。从实践角度,机器学习是一种通过利用数据,训练出模型然后使用模型预测的一种方法。自然语言处理(NatureLanguageProcessingNLP):计算机接受用户自然语言形式的输入,并在内部通过人类所定义的算法进行加工、计算等系列操作,以模拟人类对自然语言的理解,并返回用户所期望的结果。计算机视觉(ComputerVersion,CV):使用计算机及相关设备对生物视觉的一种模拟,通过对采集的图片或视频进行处理,以获得相应场景的三维信息,就像人类和许多其他类生物每天所做的那样。智能机器人(IntelligentRobot,IR):具备发达的中央处理器“大脑”、多种内部信息传感器和外部信息传感器(如视觉、听觉、触觉、嗅觉)以及效应器,即作为作用于周围环境的手段,以便于进行有目标的类似人的动作和行为。数据挖掘(DataMining,DM):一种知识发现过程,通过对海量的、杂乱无章的、不清晰的并且随机性很大的数据进行挖掘,找到其中蕴含的有规律、并且有价值和能够理解应用的知识。知识工程(KnowledgeEngineering,KE):是指对那些需要专家知识才能解决的应用难题,提供计算机求解的手段,可以看成是人工智能在知识信息处理方面的发展,研究如何由计算机表示知识,进行问题的自动求解和知识推理应用。培养目标培养具有坚实数理与计算机基础、良好人文修养,系统掌握人工智能专业基础理论与核心技术,具备在相应领域从事人工智能技术与工程的科研、开发、应用和管理工作的、具有特色领域知识和较强适应能力及现代科学创新意识的高级技术人才。核心课程离散数学、数据结构、计算机组成原理、操作系统、数字系统基础、数据库系统原理、人工智能导论、机器学习、知识表示与处理等。人工智能专业特点人工智能专业都要学些什么?人工智能难学么?到底该不该报考人工智能专业?什么是人工智能?学完人工智能以后能做什么?...带着这些疑问,我先给大家总结了一些人工智能专业的特点1、交叉学科,学习任务重人工智能专业是近几年才开始发展起来的,是一门综合性多学科交叉的专业,开设这一专业的高校都在加强人工智能与相关学科的交叉融合。人工智能涉及的学科非常多,不仅包括计算机科学、控制科学、数学等理工学科,而且还有社会学、心理学、经济学等人文学科。由此可见,人工智能专业的学习难度非常大,如果考生想要报考人工智能专业,就要充分考虑自己能不能承受相关学习的高强度。2、数学要求高,学习难度大人工智能是一个非常「烧脑」的专业。以南京大学为例,该校的人工智能专业特别注重培养学生的数学基础,课表包含高等代数、数学分析、离散数学等诸多数学基础专业。该校人工智能学院院长周志华教授曾在采访中表示,人工智能面临的问题千变万化,解决问题涉及到多种数学工具,高水平人才必须有良好的数学基础。3、存在大量误区大众对人工智能的认知与当前人工智能的发展现状之间可能存在一定的差距。很多人认为「人工智能」几乎是「无所不能」,但这种「强人工智能」目前还停留在概念阶段。现阶段的人工智能只是「弱人工智能」,只能完成一些相对简单的任务,因此,有此认识误区的同学还需要重新了解一下当前人工智能的发展现状。总之,人工智能专业看起来是报考的新热门,但是报考的时候还是要慎重选择,综合考虑自身情况和今后的人生发展规划再做选择!升学就业人工智能的发展与应用前景广阔,各行业长期具有旺盛的人工智能人才需求,是国家大力支持的人才紧缺性新兴专业。毕业生可从事人工智能算法设计、数据分析、软件开发和科学研究等方面的工作。就职单位涵盖各行各业,包括:互联网科技企业、高新信息技术企业、银行与金融企业、交通运输企业、医疗机构、科研机构和国家机关等单位。该专业暂无毕业生。人工智能专业院校推荐名单在2020年4月~6月,全国高校人工智能与大数据创新联盟针对全国已经开办人工智能专业的215所普通高校进行调研。该根据媒体公开报道资料及问卷调查反馈,将当前高校人工智能教育教学总体实力分为四类:A类、B类、C类、D类。同时,每类分为三档,其中,A类三档包括:A+类、A类、A-类;B类三档包括:B+类、B类、B-类;C类三档包括:C+类、C类、C-类;D类三档包括:D+类、D类、D-类。
人工智能专业是否是目前计算机相关专业中最好的专业
谢谢邀请!
作为一名计算机专业的研究生导师,我来回答一下这个问题。
首先,判断一个专业是否具有较强的优势,需要从多个维度来进行考虑,既要考虑专业的发展前景,同时也要考虑专业的就业情况、难易程度等等,另外对于不同的学习者来说,由于自身知识结构和能力特点上的差异,并不是所有人都适合学习某一类专业,比如人工智能专业对于学习者的数学基础就有较高的要求。
计算机领域对于新技术通常非常敏感,新技术往往有更多的就业岗位,也会有更大的发展空间和更高的薪资待遇,所以在学习计算机相关专业的时候,学习者往往更热衷于新技术,目前大数据、物联网和人工智能等专业就是计算机领域的热门专业。从发展前景和就业情况来看,这几个专业各有优缺点。
从技术成熟度来看,人工智能技术正处在行业发展的初期,虽然未来发展前景非常广阔,但是目前IT行业对于人工智能的人才需求往往集中在研发型人才,所以选择人工智能专业通常需要读一下研究生。由于人工智能专业的难度相对较大,需要学习的内容也非常多,所以学习人工智能专业还是比较辛苦的,这对于学习者的知识结构和学习能力都有较高的要求。另外,目前只有一小部分高校在本科阶段开设了人工智能专业,可以选择的余地也比较小。
相对于人工智能专业来说,目前大数据、云计算和物联网技术已经有了较为成熟的技术体系,整个IT行业的人才需求也更多样化,同时大量的高校都开设了相关专业,所以在本科阶段选择这些专业也是比较理想的选择。
我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。
如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言!